Electrical Transport Through Single Molecules

Harold U. Baranger, *Duke University*

with Rui Liu, San-Huang Ke, and Weitao Yang

Thanks to S. Getty, M. Fuhrer and L. Sita, U. Maryland

Conductance?

$I-V$ curve?

e-e interactions?

Vibrations?

Devices?

- role of contact atomic structure
- metallocenes – metal atoms good for conduction!
- improved e-e: exact-exchange OEP
Examples: Experiments on Conjugated Molecules

Reed & Tour groups,
Science 278, 252 (97)

Reichert, et al. (Karlsruhe)
APL 82, 4137 (03)

Rawlett, et al. APL 81, 3043 (02)

Organic molecules: gap of order 1 V
Metallocenes: Organometallic Sandwich Complexes

M=Fe: ferrocene
 6 electrons in levels in box
 S=0

M=Co: cobaltocene
 7 electrons in levels in box
 S=1/2

[Rob Toreki, Organometallic HyperTextBook]
Experiment: $I-V$ of a phenyl-ethynyl-ferrocene complex

[Getty, Engtrakul, Wang, Fuhrer, and Sita; U. Maryland; PRB 71, 241041(R) (2005)]
Experiment: $I-V$ of Ferrocene-OPE compared to OPE

[Getty, Engtrakul, Wang, Fuhrer, and Sita; U. Maryland]
Theoretical Approach: Two Main Ingredients

Real situation may be complicated: coupling with vibration, …

Consider simplest case: equilibrium conductance & coherent I-V

1. **Transmission of incident flux:**
 - Single-particle electron states
 - Energy of relevant states: in window of eV about E_F
 - Consider flux impinging on molecule from lead 1
 - How much gets transmitted?

2. **Electronic structure from Density Functional Theory in local approx.**
 - Use Kohn-Sham theory to get self-consistent equilibrium density & structure
 Reliable! lots of experience in quantum chemistry
 - Use Kohn-Sham single-particle states for transmission – **NOT JUSTIFIED**!
 - For non-equilibrium, get self-consistent density matrix by filling states coming from lead 1 to μ_1 and states coming from lead 2 to μ_2
Computational Methods

- Semi-infinite leads at constant μ (no voltage drop); no spin polarization
- Extended molecule: include large amount of leads in the “molecule”
- First-principles DFT theory using SIESTA program
 (Double-zeta plus polarization basis set, optimized Troullier-Martins pseudopotentials, PBE version of GGA functional for exchange-correlation)
- Transmission from Green function built from Kohn-Sham orbitals

$$G_{\text{extend. mol.}}^{R}(E) = \left\{ E^{+} - H_{\text{extend. mol.}} - \Sigma_L(E) - \Sigma_R(E) \right\}^{-1}$$

$$I(V_b) = \frac{2e^2}{\hbar} \int_{-\infty}^{+\infty} T(E, V_b) [f(E - \mu_1) - f(E - \mu_2)] dE$$

$$D_{\text{extend. mol.}} = -\frac{1}{\pi} \int_{-\infty}^{+\infty} dE \text{Im}\{G(E)\} f(E - \mu_2) - \frac{1}{2\pi} \int_{\mu_2}^{\mu_1} dE \left[G(E) \Gamma_1(E) G^\dagger(E) \right]$$

Datta group, PRB (2001); Ratner group, Chem. Phys. (2002); Guo group, PRB (2003)
Simple case: 1 Carbon ring + S to bond to Au

Vary surface [(111) or (100)], adsorption site, linking atom (S, Se, or Te), type of lead (thin, infinite surface, surface+protrusion)

Ke, et al., JACS 126, 15897 (04); JCP 122, 074704 (05); and JCP 123, 114701 (05).
Transmission for benzenedithiol+Au: Surface protrusion

\[T(E) \]

- (001)-0L, G=0.11G_0
- (001)-3L, G=0.14G_0
- (001)-5L, G=0.17G_0
- (001)-7L, G=0.11G_0

\[E - E_F \ (eV) \]

[San-Huang Ke]
Additional Au makes a difference: T(E) resonance and NDR!

transmission resonance at Fermi energy

negative differential resistance

[San-Huang Ke]
Cobaltocene: An electron in a nice place…

lowest energy bonding state:

\[\varepsilon_{1u}, \varepsilon_{2g}, \varepsilon_{2u} \]

Increasing energy

\[\varepsilon_{1g}, \varepsilon_{2g}, \varepsilon_{2u} \]
Cobaltocene Rectifier

Rectifier: Conducts under forward bias, but not under reverse bias

Liu, et al., JCP 124, 024718 (06).
Transmission Resonances in Cobaltocene Rectifier

Density of states projected on molecule

Resonance A (HOMO at V=0):

Resonance B (LUMO at V=0):

[Rui Liu]
Potential Drop in Rectifier

[Rui Liu]
Use Cobaltocene’s Spin: Molecular Spintronics

Goal: Move spin active parts from leads into molecules

Molecular Electronics

Spintronics

Molecular Spintronics

Cobaltocene spin filter:

Apply B field to align spin of cobaltocene; Current is spin polarized
Spintronic Switch in a Molecule with 2 Cobaltocenes

- Ground state => S=0 (super-exchange*).
- The more insulating the spacer, the smaller the energy difference.
- B field needed to excite molecule from S=0 to S=1 depends on spacer

*The term used for the indirect exchange coupling of unpaired spins via orbitals having paired spins.

<table>
<thead>
<tr>
<th>Molecule</th>
<th>E(S=1) – E(S=0)</th>
<th>Inverting B field (g=2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DiCo</td>
<td>12 meV</td>
<td>120 T</td>
</tr>
<tr>
<td>DiCo-2C</td>
<td>2 meV</td>
<td>20 T</td>
</tr>
<tr>
<td>DiCo-4C</td>
<td>~0.1 meV</td>
<td>~1 T</td>
</tr>
</tbody>
</table>

Energetics of the singlet-triplet splitting

(a) diCo

(b) diCo-2C
Transmission of di-Cobaltocene Molecules: A Good Switch and Spin-Valve!

How reliable are these results (NEGF+DFT)?

Strong chemical bonding but weakly coupled system around E_F [JCP 122, 044703 (2005)]

Reed & Tour groups, Science 278, 252 (97)

Cal. Value (LDA or GGA) is $>10^2$ larger!

See also Ratner group JCP (2001), PRB(2003); DiVentra group Chem. Phys. (2002)
How to understand big difference?

Approximations in this approach on several levels:

- **Local (semi-local) functional** for exchange-correlation (i.e. LDA/GGA)
 - self-interaction error (SIE) – strong vs. weak coupling
 - HOMO-LUMO gap too small

- **Ground-state energy functional** used for steady state under bias
 (very hard to improve – TDDFT?)

- **Non-interacting approximation in transport part** (NEGF)
 i.e. all the e-e interactions included through the effective potential in DFT part. (essence of DFT)

- **Kohn-Sham single-particle states for transmission** (not justified)

Evers, Weigend, and Koentopp, PRB 69, 235411 (04).
Sai, Zwolak, Vignale, and DiVentra, PRL 94, 186810 (05).
Toher, Filippetti, Sanvito, and Burke, PRL 95, 146402 (05).
Burke, Koentopp, and Evers, condmat/0502385.
Self-Interaction Error

→ Too extended electron density distribution

HF: No SIE
Hybrid: partial SIE
LDA(GGA): SIE

For weakly coupling, charge transfer from LDA, GGA, and hybrid is wrong.

→ wrong E_F position in HOMO-LUMO gap!

Extreme case: Coulomb blockade regime
Different Functionals:

<table>
<thead>
<tr>
<th></th>
<th>pros</th>
<th>cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF</td>
<td>SIE free</td>
<td>too large H-L gap, bad LUMO ψ</td>
</tr>
<tr>
<td>LDA,GGA</td>
<td>good HOMO and LUMO ψ</td>
<td>too small H-L gap, SIE</td>
</tr>
<tr>
<td>Hybrid</td>
<td>good HOMO and LUMO ψ</td>
<td>partial SIE</td>
</tr>
<tr>
<td></td>
<td>improved H-L gap</td>
<td></td>
</tr>
</tbody>
</table>

Non-local exact exchange (HF) in V_{xc} really helps!

A direction to improve DFT: orbital functional, $E_{xc}[\phi]$

difficulty: $E_c[\phi]$

many efforts in this direction, for example, MCY functional:

When $E_{xc}[\phi]$ is given,

→ Optimized Effective Potential (OEP) approach
Direct method for Optimized Effective Potential approach
Weitao Yang and Qin Wu, PRL (02)

\[[\hat{T} + \nu^\sigma_s(\mathbf{r})] \phi_{i\sigma} = \varepsilon_{i\sigma} \phi_{i\sigma}, \]

\[\nu^\sigma_s(\mathbf{r}) = \nu_{\text{ext}}(\mathbf{r}) + \nu_{\text{o}}(\mathbf{r}) + \sum_t b^\sigma_t g_t(\mathbf{r}), \]

\[\frac{\partial E[\{\phi_{i\sigma}\}]}{\partial b^\sigma_t} = \sum_{i,a \neq i} \int d\mathbf{r} \frac{\delta E[\{\phi_{i\sigma}\}]}{\delta \phi_{i\sigma}(\mathbf{r})} \phi_{a\sigma}(\mathbf{r}) \frac{\langle \phi_{a\sigma} | g_t | \phi_{i\sigma} \rangle}{\varepsilon_{i\sigma} - \varepsilon_{a\sigma}} + \text{c.c.} \]

unconstrained minimization of \(E(\{b^\sigma_t\}) = E[\{\phi_{i\sigma}\}] \)

Even for \(E[\{\phi_{i\sigma}\}] = E^{\text{EXX}}[\{\phi_{i\sigma}\}] \) (exact exchange only), semiconductor band gaps are much improved; agreement with experiment (within 0.2 eV)

[A. Gorling, et al., PRB (99)]
Systems to study

A

\(H_{16} \) (1Å) \(H_{16} \) (1Å) \(H_{16} \) (1Å)

1.2 or 1.8Å 1.2 or 1.8Å

without charge transfer

Extended Molecule

B

\(H_{16} \) (1Å) \(\text{Li}_6 \) (3Å) \(H_{16} \) (1Å)

4Å 4Å

with charge transfer

\(H_{56} - \text{Li}_6 - H_{56} \) (6-311G**)
• Very different: HF vs. HF-OEP
• Local Veff functionals give close results (max diff. ~ factor of 2)
• Interesting: HF-OEP very close to LDA, except around E_F indicating correlation may not be important. [San-Huang Ke]
Functionals with local V_{eff}: max diff. \sim factor of 10

- LDA
- B3LYP-OEP
- B3LYP
- HF-OEP
- HF

small HOMO-LUMO gap, weak coupling, without charge transfer

H_{16} (1Å) H_{16} (1Å) H_{16} (1Å)

$1.8\text{Å} \quad 1.8\text{Å}$

[San-Huang Ke]
charge transfer
small HOMO-LUMO gap
weak coupling

\[
\begin{array}{c|c|c|c|c|c}
 & \text{LDA} & \text{GGA} & \text{B3LYP} & \text{HF-OEP} & \text{HF} \\
\hline
\Delta Q (e) & 0.39 & 0.39 & 0.35 & 0.00 & 0.00 \\
G (G_0) & 0.040 & 0.033 & 0.055 & 0.00022 & 0.000020 \\
\end{array}
\]

\text{10}^2 (\text{10}^3) \text{ bigger than HF-OEP (HF)}

[San-Huang Ke]
Conclusions

NEGF+DFT approach: Efficient and powerful, but not quantitatively reliable (for weakly coupled systems). Improvements in E_{xc} needed!

General Lessons:
- **Contact atomic structure does matter!**
 additional Au caused a dramatic increase of conductance
- **Cobaltocene has a very nice additional electron:**
 * resonance near the Fermi energy of Au
 * unpaired spin to use for spintronics

Methods:
- **Hybrid functionals:** improve over LDA, GGA, but self-interaction still a problem
- **OEP approach:** big improvement for functionals with a non-local effective potential

Credits: Rui Liu, San-Huang Ke, Weitao Yang, and HUB
Expt: Stephanie Getty, Michael Fuhrer, Larry Sita, and team
THE END
Conductance of Ferrocene-OPE: Calculation
But what about the OPE control?