Electrical Transport Through Single Molecules

Harold U. Baranger, *Duke University*

with Rui Liu, San-Huang Ke, and Weitao Yang

Thanks to S. Getty, M. Fuhrer and L. Sita, U. Maryland

Conductance?

I-V curve?

e-e interactions?

Vibrations?

Devices?

- role of contact atomic structure
- metallocenes metal atoms good for conduction!
- improved e-e: exact-exchange OEP

Examples: Experiments on Conjugated Molecules

Organic molecules: gap of order 1 V

Metallocenes: Organometallic Sandwich Complexes

Experiment: I-V of a phenyl-ethynyl-ferrocene complex

Experiment: I-V of Ferrocene-OPE compared to OPE

[Getty, Engtrakul, Wang, Fuhrer, and Sita; U. Maryland]

Theoretical Approach: Two Main Ingredients

Real situation may be complicated: coupling with vibration, ...

Consider simplest case: equilibrium conductance & coherent I-V

1. Transmission of incident flux:

- Single-particle electron states
- Energy of relevant states: in window of eV about E_F
- Consider flux impinging on molecule from lead 1
- How much gets transmitted?

2. Electronic structure from Density Functional Theory in local approx.

- Use Kohn-Sham theory to get self-consistent equilibrium density & structure Reliable! lots of experience in quantum chemistry
- Use Kohn-Sham single-particle states for transmission **NOT JUSTIFIED!**
- For non-equilibrium, get self-consistent density matrix by filling states coming from lead 1 to μ_1 and states coming from lead 2 to μ_2

Computational Methods

- Semi-infinite leads at constant μ (no voltagle drop); no spin polarization
- Extended molecule: include large amount of leads in the "molecule"
- First-principles DFT theory using SIESTA program (Double-zeta plus polarization basis set, optimized Troullier-Martins pseudopotentials, PBE version of GGA functional for exchange-correlation)
- Transmission from Green function built from Kohn-Sham orbitals

$$\mathbf{G}_{\text{extend. mol.}}^{R}(E) = \left\{ E^{+} - \mathbf{H}_{\text{extend. mol.}} - \mathbf{\Sigma}_{L}(E) - \mathbf{\Sigma}_{R}(E) \right\}^{-1}$$
$$I(V_{b}) = \frac{2e^{2}}{h} \int_{-\infty}^{+\infty} T(E, V_{b}) [f(E - \mu_{1}) - f(E - \mu_{2})] dE$$

$$\mathbf{D}_{\text{extend. mol.}} = -\frac{1}{\pi} \int_{-\infty}^{+\infty} dE \operatorname{Im} \{ \mathbf{G}(E) \} f(E - \mu_2) - \frac{1}{2\pi} \int_{\mu_2}^{\mu_1} dE \left[\mathbf{G}(E) \mathbf{\Gamma}_1(E) \mathbf{G}^{\dagger}(E) \right]$$

San-Huang Ke, H.U.Baranger, and W. Yang, PRB 70, 085410 (2004). Datta group, PRB (2001); Ratner group, Chem. Phys. (2002); Guo group, PRB (2003)

Simple case: 1 Carbon ring + S to bond to Au

Vary surface [(111) or (100)], adsorption site, linking atom (S, Se, or Te), **type of lead** (thin, infinite surface, surface+protrusion)

Ke, et al., JACS 126, 15897 (04); JCP 122, 074704 (05); and JCP 123, 114701 (05).

Transmission for benzenedithiol+Au: Surface+protrusion

2√2x2√2

[San-Huang Ke]

Additional Au makes a difference: T(E) resonance and NDR!

[San-Huang Ke]

Cobaltocene: An electron in a nice place...

Cobaltocene Rectifier

Rectifier: Conducts under forward bias, but not under reverse bias

Transmission Resonances in Cobaltocene Rectifier

Potential Drop in Rectifier

[Rui Liu]

Use Cobaltocene's Spin: Molecular Spintronics

Goal: Move spin active parts from leads into molecules

Apply B field to align spin of cobaltocene; Current is spin polarized

Spintronic Switch in a Molecule with 2 Cobaltocenes

Energetics of the singlet-triplet splitting

Molecule	E(S=1) - E(S=0)	Inverting B field (g=2)
DiCo	12 meV	120 T
DiCo-2C	2 meV	20 T
DiCo-4C	~0.1 meV	~1 T

- Ground state \Rightarrow S=0 (super-exchange*).
- The more insulating the spacer, the smaller the energy difference.
- B field needed to excite molecule from S=0 to S=1 depends on spacer

^{*}The term used for the indirect exchange coupling of unpaired spins via orbitals having paired spins.

Transmission of di-Cobaltocene Molecules: A Good Switch and Spin-Valve!

How reliable are these results (NEGF+DFT)?

Strong chemical bonding but weakly coupled system around E_F [JCP 122, 044703 (2005)]

Reed & Tour groups, Science 278, 252 (97)

Cal. Value (LDA or GGA) is >10² larger!

See also Ratner group JCP (2001), PRB(2003); DiVentra group Chem. Phys. (2002)

How to understand big difference?

Approximations in this approach on several levels:

- Local (semi-local) functional for exchange-correlation (ie. LDA/GGA)
 - * self-interaction error (SIE) strong vs. weak coupling)
 - * HOMO-LUMO gap too small
- Ground-state energy functional used for steady state under bias (very hard to improve – TDDFT?)
- Non-interacting approximation in transport part (NEGF)

 i.e. all the e-e interactions included through the
 effective potential in DFT part. (essence of DFT)
- Kohn-Sham single-particle states for transmission (not justified)

```
Evers, Weigend, and Koentopp, PRB 69, 235411 (04). Sai, Zwolak, Vignale, and DiVentra, PRL 94, 186810 (05). Toher, Filippetti, Sanvito, and Burke, PRL 95, 146402 (05). Burke, Koentopp, and Evers, condmat/0502385.
```

Self-Interaction Error

→ Too extended electron density distribution

HF: No SIE

Hybrid: partial SIE

LDA(GGA): SIE

For weakly coupling, charge transfer from LDA, GGA, and hybrid is wrong.

→wrong E_F position in HOMO-LUMO gap!

Extreme case: Coulomb blockade regime

Different Functionals:

pros cons

HF: SIE free too large H-L gap, bad LUMO ψ

LDA,GGA: good HOMO and LUMO ψ too small H-L gap, SIE

Hybrid: good HOMO and LUMO ψ partial SIE

improved H-L gap

Non-local exact exhange (HF) in V_{xc} really helps!

A direction to improve DFT: orbital functional, $E_{xc}[\phi]$ difficulty: $E_c[\phi]$

many efforts in this direction, for example, MCY functional: Mori-Sanchez, Cohen, and Yang, *JCP* (2006)

When E_{xc}[\phi] is given,

→ Optimized Effective Potential (OEP) approach

Direct method for Optimized Effective Potential approach

Weitao Yang and Qin Wu, PRL (02)

$$[\hat{T} + v_s^{\sigma}(\mathbf{r})]\phi_{i\sigma} = \varepsilon_{i\sigma}\phi_{i\sigma},$$

$$v_s^{\sigma}(\mathbf{r}) = v_{\text{ext}}(\mathbf{r}) + v_o(\mathbf{r}) + \sum_t b_t^{\sigma} g_t(\mathbf{r}),$$

$$\frac{\partial E[\{\phi_{i\sigma}\}]}{\partial b_t^{\sigma}} = \sum_{i,a\neq i} \int d\mathbf{r} \frac{\delta E[\{\phi_{i\sigma}\}]}{\delta \phi_{i\sigma}(\mathbf{r})} \phi_{a\sigma}(\mathbf{r}) \frac{\langle \phi_{a\sigma}|g_t|\phi_{i\sigma}\rangle}{\varepsilon_{i\sigma} - \varepsilon_{a\sigma}} + \text{c.c.}$$

unconstrained minimization of $E(\{b_t^{\sigma}\}) = E[\{\phi_{i\sigma}\}]$

Even for $E[\{\phi_{i\sigma}\}] = E^{\rm EXX}[\{\phi_{i\sigma}\}]$ (exact exchange only), semiconductor band gaps are much improved; agreement with experiment (within 0.2 eV)

[A. Gorling, et al., PRB (99)]

Systems to study

- Very different: HF vs. HF-OEP
- Local Veff functionals give close results (max diff. ~ factor of 2)
- Interesting: HF-OEP very close to LDA, except around E_F indicating correlation may not be important.

[San-Huang Ke]

Functionals with local Veff: max diff. ~ factor of 10

Conclusions

NEGF+DFT approach: Efficient and powerful, but **not** quantitatively reliable (for weakly coupled systems). Improvements in E_{xc} needed!

General Lessons:

- Contact atomic structure does matter! additional Au caused a dramatic increase of conductance
- Cobaltocene has a very nice additional electron:
 - * resonance near the Fermi energy of Au
 - * unpaired spin to use for spintronics

Methods:

- **Hybrid functionals:** improve over LDA,GGA, but self-interaction still a problem
- OEP approach: big improvement for functionals with a non-local effective potential

<u>Credits</u>: Rui Liu, San-Huang Ke, Weitao Yang, and HUB Expt: Stephanie Getty, Michael Fuhrer, Larry Sita, and team

THE END

Title

Conductance of Ferrocene-OPE: Calculation

But what about the OPE control?

