TNT Colloquium: Mapping out the phase diagram of QCD in hadronic transport [Duke Virtual]


Speaker(s): Agnieszka Sorensen (UCLA)
Critical behavior in hadronic transport is largely unexplored. With few exceptions, hadronic potentials are neglected in hybrid simulations, which means that transport may be missing many-body effects likely to be increasingly important at high baryon densities. Moreover, the few hadronic transport codes that do employ mean-field potentials only take into account the behavior of ordinary nuclear matter without the possible QGP phase transition. In this talk, I will present an approach to this problem in which the EOS of nuclear matter and the corresponding single-particle equations of motion used in transport are both obtained from a relativistic density functional with fully parameterizable interactions. I will show that this model is readily constrained to reproduce desired properties of the QCD EOS, which include the known behavior of ordinary nuclear matter as well as a family of possible phase transitions at high baryon number density. I will then discuss the behavior of nuclear matter in a number of scenarios simulated in hadronic transport, including evolution in the vicinity of a critical point of the QCD phase transition. Finally, I will highlight the relation between quantities calculated in infinite, continuous matter calculations and observables obtained from simulations using a finite number of particles.