A natural silicon target was investigated in a natSi(γ, γ′) photon-scattering experiment with fully linearly-polarised, quasi-monochromatic γ rays in the entrance channel. The mean photon energies used were ⟨ Eγ⟩ = 9.33, 9.77, 10.17, 10.55, 10.93, and 11.37 MeV, and the relative energy spread… read more about this publication »
This paper discusses possible phenomenological implications for p+A and A+A collisions of the results of recent numerical AdS/CFT calculations examining asymmetric collisions of planar shocks. In view of the extreme Lorentz contraction, we model highly relativistic heavy ion collisions as a… read more about this publication »
Heavy quarks produced in relativistic heavy-ion collisions are known to be sensitive probes of the hot and dense QCD matter they traverse. In this paper we study how their dynamics is affected by the nature of the bulk evolution of the QCD matter, the initial condition of the system, and the… read more about this publication »
A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of s=13 TeV were… read more about this publication »
The ATLAS detector at the Large Hadron Collider reads out particle collision data from over 100 million electronic channels at a rate of approximately 100 kHz, with a recording rate for physics events of approximately 1 kHz. Before being certified for physics analysis at computer centres worldwide… read more about this publication »
PURPOSE: Phantoms are useful tools in diagnostic CT, but practical limitations reduce phantoms to being only a limited patient surrogate. Furthermore, a phantom with a single cross sectional area cannot be used to evaluate scanner performance in modern CT scanners that use dose reduction techniques… read more about this publication »
PURPOSE: Daily flood-field uniformity evaluation serves as the central element of nuclear medicine (NM) quality control (QC) programs. Uniformity images are traditionally analyzed using pixel value-based metrics, that is, integral uniformity (IU), which often fail to capture subtle structure and… read more about this publication »
In this work we apply effective field theory (EFT) to observables in quarkonium production and decay that are sensitive to soft gluon radiation, in particular measurements that are sensitive to small transverse momentum. Within the EFT framework we study χQ decay to light quarks followed by the… read more about this publication »
We present a tomographic imaging technique, termed Deep Prior Diffraction Tomography (DP-DT), to reconstruct the 3D refractive index (RI) of thick biological samples at high resolution from a sequence of low-resolution images collected under angularly varying illumination. DP-DT processes the multi… read more about this publication »
Disordered multicomponent systems, occupying the mostly uncharted centres of phase diagrams, were proposed in 2004 as innovative materials with promising applications. The idea was to maximize the configurational entropy to stabilize (near) equimolar mixtures and achieve more robust systems, which… read more about this publication »
Pathologies associated with calcified tissue, such as osteoporosis, demand in vivo and/or in situ spectroscopic analysis to assess the role of chemical substitutions in the inorganic component. High energy X-ray or NMR spectroscopies are impractical or damaging in biomedical conditions. Low energy… read more about this publication »
Half metals are a peculiar class of ferromagnets that have a metallic density of states at the Fermi level in one spin channel and simultaneous semiconducting or insulating properties in the opposite one. Even though they are very desirable for spintronics applications, identification of robust… read more about this publication »
Ionising radiation detectors based on wide band-gap materials have the potential to operate at temperatures higher than 200°C. Such detectors are important in applications such as monitoring near nuclear reactors and in deep oil and gas well borehole logging. We discuss the development of alpha… read more about this publication »
Sensorimotor integration in the cerebellum is essential for refining motor output, and the first stage of this processing occurs in the granule cell layer. Recent evidence suggests that granule cell layer synaptic integration can be contextually modified, although the circuit mechanisms that could… read more about this publication »
We study a class of gauge fixings of the Bacon-Shor code at the circuit level, which includes a subfamily of generalized surface codes. We show that for these codes, fault tolerance can be achieved by direct measurements of the stabilizers. By simulating our fault-tolerant scheme under biased noise… read more about this publication »
The experimental results on the ratios of branching fractions R(D)=B(B[over ¯]→Dτ^{-}ν[over ¯]_{τ})/B(B[over ¯]→Dℓ^{-}ν[over ¯]_{ℓ}) and R(D^{*})=B(B[over ¯]→D^{*}τ^{-}ν[over ¯]_{τ})/B(B[over ¯]→D^{*}ℓ^{-}ν[over ¯]_{ℓ}), where ℓ denotes an electron or a muon, show a long-standing discrepancy with… read more about this publication »
Theories beyond the standard model often predict the existence of an additional neutral boson, the Z^{'}. Using data collected by the Belle II experiment during 2018 at the SuperKEKB collider, we perform the first searches for the invisible decay of a Z^{'} in the process e^{+}e^{-}→μ^{+}μ^{-}Z… read more about this publication »
This tutorial describes the application of digital holography to the terahertz spectral region and demonstrates how to reconstruct images of complex dielectric targets. Using highly coherent terahertz sources, high-fidelity amplitude and phase reconstructions are achieved, but because the… read more about this publication »
We propose an algorithm, deployable on a highly-parallelized graph computing architecture, to perform rapid reconstruction of charged-particle trajectories in the high energy collisions at the Large Hadron Collider and future colliders. We use software emulation to show that the algorithm can… read more about this publication »
Coherent elastic neutrino-nucleus scattering (CEvNS), the gentlest kind of interaction of a neutrino with an entire nucleus, was first predicted in 1974, but not observed until 2017 by the COHERENT collaboration. COHERENT and many other experiments are pursuing further measurements of this low… read more about this publication »
AbstractThe role of coherence in quantum thermodynamics has been extensively studied in the recent years and it is now well-understood that coherence between different energy eigenstates is a resource independent of other thermodynamics resources, such as work. A fundamental remaining open question… read more about this publication »
The 5-yr Dark Energy Survey Supernova Programme (DES-SN) is one of the largest and deepest transient surveys to date in terms of volume and number of supernovae. Identifying and characterizing the host galaxies of transients plays a key role in their classification, the study of their formation… read more about this publication »
We present improved photometric measurements for the host galaxies of 206 spectroscopically confirmed type Ia supernovae discovered by the Dark Energy Survey Supernova Program (DES-SN) and used in the first DES-SN cosmological analysis. For the DES-SN sample, when considering a 5D (z, x1, c, α, β)… read more about this publication »