Baranger Group

Topical Area: Theoretical Nanophysics
Quantum Emergent Phenomena at the Nanoscale

q1Dwire_localization
kondo_spec_setup
ann18_molec_intefere

Research Topics

The broad focus of my group is quantum open systems at the nanoscale, particularly the generation of correlation between particles in such systems. Fundamental interest in nanophysics-- the physics of small, nanometer scale, bits of solid-- stems from the ability to control and probe systems on length scales larger than atoms but small enough that the averaging inherent in bulk properties has not yet occurred. Using this ability, entirely unanticipated phenomena can be uncovered on the one hand, and the microscopic basis of bulk phenomena can be probed on the other. Additional interest comes from the many links between nanophysics and nanotechnology. Within this thematic area, our work ranges from projects trying to nail down realistic behavior in well-characterized systems, to more speculative projects reaching beyond regimes investigated experimentally to date.

Correlations between particles are a central issue in many areas of condensed matter physics, from emergent many-body phenomena in complex materials, to strong matter-light interactions in quantum information contexts, to transport properties of single molecules. Such correlations, for either electrons or bosons (photons, plasmons, phonons,…), underlie key phenomena in nanostructures. Using the exquisite control of nanostructures now possible, experimentalists will be able to engineer correlations in nanosystems in the near future. Of particular interest are cases in which one can tune the competition between different types of correlation, or in which correlation can be tunably enhanced or suppressed by other effects (such as confinement or interference), potentially causing a quantum phase transition-- a sudden, qualitative change in the correlations in the system.

My recent work has addressed correlations in both electronic systems (quantum wires and dots) and photonic systems (photon waveguides). We have focused on 3 different systems: (1) qubits coupled to a photonic waveguide, (2) quantum dots in a dissipative environment, and (3) low-density electron gas in a quantum wire. The methods used are both analytical and numerical, and are closely linked to experiments.

Preprints

  1. Photon Statistics in a Waveguide: Beyond Bunch- ing and Antibunching,X. H. H. Zhang and H. U. Baranger,
    arXiv/1710.01543 (2017). 

  2. Non-Markovian Dynamics of a Qubit Due to Single-Photon Scattering in a Waveguide, Y.-L. L. Fang, F. Ciccarello, and H. U. Baranger, 
    arXiv/1707.05946 (2017).
  3. Universal Nonequilibrium I-V Curve at an Interacting Impurity Quantum Critical Point,G. Zhang, C.-H. Chung, C. T. Ke, C.-Y. Lin, H. Mebrahtu, A. I. Smirnov, G. Finkelstein, and H. U. Baranger,
    arXiv:1609.04765 (2016).

    2017

  4. Multiple Emitters in a Waveguide: Non-Reciprocity and Correlated Photons at Perfect Elastic Transmission, Y-L. L. Fang and H. U. Baranger, Phys. Rev. A 96, 013842 (2017). 10.1103/PhysRevA.96.013842 / arXiv:1610.04661 
  5. Rescuing a Quantum Phase Transition with Quantum Noise, Gu Zhang, E. Novais, and H. U Baranger, Phys. Rev. Lett. 118, 050402 (2017). 10.1103/PhysRevLett.118.050402 / arXiv:1604.07440 

    ​2016 

  6. Dynamics of a Qubit in a High-Impedance Transmission Line from a Bath Perspective, S, Bera, H. U. Baranger, and S. Florens, Phys. Rev. A 93, 033847 (2016). 10.1103/PhysRevA.93.033847 / arXiv:1601.00531 
  7. Photon Correlations Generated by Inelastic Scattering in a One-Dimensional Waveguide Coupled to Three-Level Systems, Y.-L. L. Fang and H. U. Baranger, Physica E 78, 92 (2016) [in memory of M. Buttiker]. 10.1016/j.physe.2016.02.015  / arXiv:1508.04164

    2015 

  8. Detecting Photon-Photon Interactions in a Superconducting Circuit,L.-J. Jin, M. Houzet, J. S. Meyer, H. U. Baranger, and F. W. J. Hekking,Phys. Rev. B 92, 134503 (2015). 10.1103/PhysRevB.92.134503 / arXiv:1505.05356  
  9. Waveguide QED: Power Spectra and Correlations of Two Photons Scattered Off Multiple Distant Qubits and a Mirror, Y.-L. L. Fang and H. U. Baranger, Phys. Rev. A 91, 053845 (2015). 10.1103/PhysRevA.91.053845 / arXiv:1502.03803 

    2014

  10. Generalized Multi-Polaron Expansion for the Spin-Boson Model: Environmental Entanglement and the Biased Two-State System,
    S. Bera, A. Nazir, A. W. Chin, H. U. Baranger, and S. Florens,Phys. Rev. B 90, 075110 (2014). 10.1103/PhysRevB.90.075110 / arXiv:1406.4983
  11. Transport Signatures of Majorana Quantum Criticality Realized By Dissipative Resonant Tunneling, H. Zheng, S. Florens, and H. U. Baranger,Phys. Rev. B 89, 235135 (2014). 10.1103/PhysRevB.89.235135 / arXiv:1403.5175   
  12. Stabilizing Spin Coherence through Environmental Entanglement in Strongly Dissipative Quantum Systems, S. Bera, S. Florens, H. U. Baranger, N. Roch, A. Nazir, and A. W. Chin, Phys. Rev. B 89, 121108(R) (2014) [Rapid Communication and Editor's Suggestion] 10.1103/PhysRevB.89.121108 / arXiv:1307.5681 
  13. Tunable Quantum Phase Transitions in a Resonant Level Coupled to Two Dissipative Baths, D. E. Liu, H. Zheng, G. Finkelstein, and H. U. Baranger,Phys. Rev. B 89, 085116 (2014). 10.1103/PhysRevB.89.085116 / arXiv:1310.4773   
  14. One-Dimensional Waveguide Coupled to Multiple Qubits: Photon-Photon Correlations, Y.-L. L. Fang, H. Zheng, and H. U. Baranger, EPJ Quantum Technology 1, 3 (2014).  (arXiv:1308.6551)

    2013

  15. Observation of Majorana Quantum Critical Behavior in a Resonant Level Coupled to a Dissipative Environment, H. T. Mebrahtu, I. V. Borzenets, H. Zheng, Y. V. Bomze, A. I. Smirnov, S. Florens, H. U. Baranger, and G. Finkelstein, Nature Phys. 9, 732-737 (2013).  (arXiv:1212.3857)
  16. Hamiltonian Methods in Quantum Error Correction and Fault Tolerance,E. Novais, E. R. Mucciolo, and H. U. Baranger, published in Quantum Error Correction, edited by D. Lidar and P. Zanardi (Cambridge Univ. Press, 2013) pp. 585-611.   (??)
  17. Waveguide-QED-Based Photonic Quantum Computation, H. Zheng, D. J. Gauthier, and H. U. Baranger, Phys. Rev. Lett. 111, 090502 (2013).   (arXiv:1211.1711)
  18. Mesoscopic Fluctuations in the Fermi-Liquid Regime of the Kondo Problem,D. Ullmo, D. E. Liu, S. Burdin, and H. U. Baranger, Eur. Phys. Journ. B 86, 353 (2013)
     (arXiv:1210.4349)
  19. Floquet Majorana Fermions for Topological Qubits, D. E. Liu, A. Levchenko, and H. U. Baranger, Phys. Rev. Lett. 111, 047002 (2013).
     (arXiv:1211.1404)
  20. Zigzag Phase Transition in Quantum Wires, A. C. Mehta, C. J. Umrigar, J. S. Meyer, and H. U. Baranger, Phys. Rev. Lett. 110, 246802 (2013).
     (arXiv:1302.5429)
  21. Persistent Quantum Beats and Long-Distance Entanglement from Non-Markovian Processes, H. Zheng and H. U. Baranger, Phys. Rev. Lett. 110, 113601 (2013).
     (arXiv:1206.4442)
  22. Decoy-State Quantum Key Distribution with Nonclassical Light Generated in a One-dimensional Waveguide, H. Zheng, D. J. Gauthier, and H. U. Baranger, Optics Lett. 38, 622 (2013).
    (arXiv:1210.1113)

    2012

  23. Mesoscopic Anderson Box: Connecting Weak to Strong Coupling,D. E. Liu, S. Burdin, H. U. Baranger, and D. Ullmo, Phys. Rev. B 85, 155455 (2012) [Editor's Suggestion].
     (arXiv:1202.0626)
  24. Strongly Correlated Photons Generated by Coupling a Three- or Four-Level System to a Waveguide, H. Zheng, D. J. Gauthier, and H. U. Baranger, Phys. Rev. A 85, 043832 (2012).
     (arXiv:1202.2776)
  25. From Weak- to Strong-Coupling Mesoscopic Fermi Liquids, D. E. Liu, S. Burdin, H. U. Baranger, and D. Ullmo, EPL (Europhys. Lett.) 97, 17006 (2012).
     (arXiv:1106.5688)

    2011

  26. Detecting a Majorana-Fermion Zero Mode Using a Quantum Dot, D. E. Liu and H. U. Baranger, Phys. Rev. B. 84, 201308(R) (2011).
     (arXiv:1107.4338)
  27. Cavity-Free Photon Blockade Induced by Many-Body Bound States, H. Zheng, D. J. Gauthier, and H. U. Baranger, Phys. Rev. Lett. 107, 223601 (2011).
     (arXiv:1107.0309)
  28. Kondo Effect and Mesoscopic Fluctuations, D. Ullmo, S. Burdin, D. E. Liu, and H. U. Baranger, Pramana 77, special issue #5, pp. 769-779 (2011).
    (arXiv:??)

    2010

  29. Waveguide QED: Many-Body Bound-State Effects in Coherent and Fock-State Scattering from a Two Level System, H. Zheng, D. J. Gauthier, and H. U. Baranger, Phys. Rev. A 82, 063816 (2010).
      (arXiv:1009.5325)
  30. Quantum Phase Transition and Emergent Symmetry in Quadruple Quantum Dot System, D. E. Liu, S. Chandrasekharan, and H. U. Baranger, Phys. Rev. Lett. 105, 256801 (2010).
      (arXiv:1008.1262)
  31. Conductance of Quantum Impurity Models from Quantum Monte Carlo,D. E. Liu, S. Chandrasekharan, and H. U. Baranger, Phys. Rev. B. 82, 165447 (2010).
     (arXiv:1007.5280)
  32. Two-Stage Kondo Effect and Kondo Box Level Spectroscopy in a Carbon Nanotube, Yu. Bomze, I. Borzenets, H. Mebrahtu, A. Makarovski, H. U. Baranger, and G. Finkelstein, Phys. Rev. B 82, 161411(R) (2010).
     (arXiv:1010.1551)
  33. For how long is it possible to quantum compute?, E. Novais, E. R. Mucciolo, and H. U. Baranger, Phys. Rev. A 82, 020303(R) (2010).
     (arXiv:1004.3247)
  34. Time-Dependent Transport Through Molecular Junctions, S.-H. Ke, R. Liu, W. Yang, and H. U. Baranger, J. Chem. Phys. 132, 234105 (2010).
     (arXiv:1002.1441)
  35. Graphene Rings in Magnetic Fields: Aharonov-Bohm Effect and Valley Splitting, J. Wurm, M. Wimmer, H. U. Baranger, and K. Richter, Semicond. Sci. Tech. 25, 034003 (2010).
     (arXiv:0904.3182)

    2009

  36. Localization in an Inhomogeneous Quantum Wire, A. D. Guclu, C. J. Umrigar, Hong Jiang, and H. U. Baranger, Phys. Rev. B 80, 201302(R) (2009).
     (arXiv:0807.4292)
  37. Interfaces Within Graphene Nanoribbons, J. Wurm, M. Wimmer, I. Adagideli, K. Richter, and H. U. Baranger, New J. Phys. 11, 095022 (2009).
     (arXiv:0906.4351)
  38. Ground State and Excitations of Quantum Dots with "Magnetic Impurities",R. K. Kaul, D. Ullmo, G. Zarand, S. Chandrasekharan, and H. U. Baranger, Phys. Rev. B 80, 035318 (2009).
     (arXiv:0901.0016)
  39. Symmetry Classes in Graphene Quantum Dots: Universal Spectral Statistics, Weak Localization, and Conductance Fluctuations, J. Wurm, A. Rycerz, I. Adagideli, M. Wimmer, K. Richter, and H. U. Baranger, Phys. Rev. Lett. 102, 056806 (2009).
    (arXiv:0808.1008)
  40. Thermopower of Molecular Junctions: An ab initio Study, S.-H. Ke, W. Yang, S. Curtarolo, and H. U. Barnager, Nano Lett. 9, 1011-1014 (2009).
      (??)

    2008

  41. Quantum Interference Controlled Molecular Electronics, S.-H. Ke, W. Yang, and H. U. Baranger, Nano Lett. 8, 3257-3261 (2008).
     (arXiv:0806.3593)
  42. Hamiltonian Formulation of Quantum Error Correction and Correlated Noise, E. Novais, E. R. Mucciolo, and H. U. Baranger, Phys. Rev. A 78, 012314 (2008).
     (arXiv:0710.1624)
  43. Interaction-Induced Strong Localization in Quantum Dots, A. D. Guclu, A. Ghosal, C. J. Umrigar, and H. U. Baranger, Phys. Rev. B 77, 041301(R) (2008).
     (arXiv:0708.1304)

    2007

  44. Fermi Edge Singularities in the Mesoscopic Regime: II. Photo-absorption Spectra, M. Hentschel, D. Ullmo, and H. U. Baranger, Phys. Rev. B 76, 245419 (2007).
     (arXiv:0706.2612)
  45. Improving Intrinsic Decoherence in Multi-Quantum-Dot Charge Qubits,M. Hentschel, D. C. B. Valente, E. R. Mucciolo, and H. U. Baranger, Phys. Rev. B 76, 235309 (2007).
     (arXiv:0705.3923)
  46. Level Spacings in Random Matrix Theory and Coulomb Blockade Peaks in Quantum Dots, D. Herman, T. T. Ong, G. Usaj, H. Mathur, and H. U. Baranger Phys. Rev. B 76, 195448 (2007).
     (arXiv:0707.1620)
  47. Electron Transport Through Single Conjugated Organic Molecules: Basis Set Effects is Ab Initio Calculations, S.-H. Ke, H. U. Baranger, and W. Yang, J. Chem. Phys.127, 144107 (2007).
     (arXiv:0705.3409)
  48. Cobaltocene as a Spin Filter, R. Liu, S.-H. Ke, H. U. Baranger, and W. Yang, J. Chem. Phys. 127, 141104 (2007).
     (cond-mat/??)
  49. Contact Transparency of Nanotube-Molecule-Nanotube Junctions, S.-H. Ke, H. U. Baranger, and W. Yang, Phys. Rev. Lett. 99, 146802 (2007).
     (arXiv:??)
  50. Incipient Wigner Localization in Circular Quantum Dots, A. Ghosal, A. D. Guclu, C. J. Umrigar, D. Ullmo, and H. U. Baranger, Phys. Rev. B 76, 085341 (2007).
     (cond-mat/0702666)
  51. The Role of the Exchange-Correlation Potential in ab initio Electron Transport Calculations, S.-H. Ke, H. U. Baranger, and W. Yang, J. Chem. Phys. 126, 201012 (2007).
     (cond-mat/0609637)
  52. Resilient Quantum Computation in Correlated Environments: A Quantum Phase Transition Perspective, E. Novais, E. R. Mucciolo, and H. U. Baranger, Phys. Rev. Lett. 98, 040501 (2007).
      (quant-ph/0607155)

    2006

  53. Quantum Phase Transitions of Hard-Core Bosons in Background Potentials, A. Priyadarshee, S. Chandrasekharan, J.-W. Lee, and H. U. Baranger, Phys. Rev. Lett. 97, 115703 (2006).
      (cond-mat/0607251)
  54. Decoherence by Correlated Noise and Quantum Error Correction,E. Novais and H. U. Baranger, Phys. Rev. Lett. 97, 040501 (2006).
     (quant-ph/0508228)
  55. Negative Differential Resistance and Hysteresis Through an Organometallic Molecule from Molecular Level Crossing, R. Liu, S.-H. Ke, H. U. Baranger, and W. Yang, J. Am. Chem. Soc. (Communication) 128, 6274 (2006).
     (cond-mat/??)
  56. Disorder-Induced Superfluidity in Hardcore Bosons in Two Dimensions, J.-W. Lee, S. Chandrasekharan, and H. U. Baranger, submitted to Phys. Rev. B.
     (cond-mat/0611109 )
  57. Spectroscopy of the Kondo Problem in a Box, R. K. Kaul, G. Zarand, S. Chandrasekharan, D. Ullmo, and H. U. Baranger, Phys. Rev. Lett. 96, 176802 (2006).
    (cond-mat/0601274)
  58. Nanotube-Metal Junctions: 2- and 3- Terminal Electrical Transport, S.-H. Ke, W. Yang, and H. U. Baranger, J. Chem Phys. 124, 181102 (2006).
     (cond-mat/0511550)
  59. Correlation Induced Inhomogeneity in Circular Quantum Dots, A. Ghosal, A. D. Guclu, C. J. Umrigar, D. Ullmo, and H. U. Baranger, Nature Physics, 2, 336 (2006).
     (cond-mat/0601178)
  60. Organometallic Molecular Rectification, R. Liu, S.-H. Ke, W. Yang, and H. U. Baranger, J. Chem. Phys. 124, 024718 (2006).
     (cond-mat/??)

    2005

  61. On the Sign Problem in the Hirsch-Fye Algorithm for Impurity Problems, J. Yoo, S. Chandrasekharan, R. K. Kaul, D. Ullmo, and H. U. Baranger, J. Phys. A: Math. Gen. 38, 10307 (2005).
       (cond-mat/0412771)
  62. Coulomb Blockade Peak Spacings: Interplay of Spin and Dot-Lead Coupling, S. Vorojtsov and H. U. Baranger, Phys. Rev. B 72, 024525 (2005).
      (cond-mat/0505569)
  63. Organometallic Spintronics: Dicobaltocene Switch, R. Liu, S.-H. Ke, W. Yang, and H. U. Baranger, Nano Lett. 5, 1959 (2005).
      (cond-mat/??)
  64. Models of Electrodes and Contacts in Molecular Electronics, S.-H. Ke, H. U. Baranger, and W. Yang, J. Chem. Phys. 123, 114701 (2005).
      (cond-mat/0504089)
  65. Anisotropy in Ferromagnetic Nanoparticles: Level-to-Level Fluctuations of a Collective Effect, G. Usaj and H. U. Baranger, Europhysics Lett. 72, 110 (2005).
     (cond-mat/0407771)
  66. Mesoscopic Kondo Problem, R. K. Kaul, D. Ullmo, S. Chandrasekharan, and H. U. Baranger, Europhysics Lett. 71, 973 (2005).
     (cond-mat/0409211)
  67. Quantum Monte Carlo Study of Disordered Fermions, J.-W. Lee, S. Chandrasekharan, and H. U. Baranger, Phys. Rev. B 72, 024525 (2005).
      (cond-mat/0411306)
  68. Fermi Edge Singularities in the Mesoscopic Regime: I. Anderson Orthogonality Catastrophe, M. Hentschel, D. Ullmo, and H. U. Baranger, Phys. Rev. B 72, 035310 (2005).
      (cond-mat/0503330)
  69. Statistics of Wave Functions in Disordered Systems with Applications to Coulomb Blockade Peak Spacing, M. Miller, D. Ullmo, and H. U. Baranger, Phys. Rev. B 72, 045305 (2005).
     (cond-mat/0406493)
  70. Interaction Effects in Irregular Quantum Dots: A Quantum Monte Carlo Study, A. Ghosal, C. J. Umrigar, H. Jiang, D. Ullmo, and H. U. Baranger, Phys. Rev. B 71, 241306(R) (2005).
      (cond-mat/0411242)
  71. Near-perfect Conduction Through a Ferrocene-based Molecular Wire, S. A. Getty, C. Engtrakul, L. Wang, R. Liu, S.-H. Ke, H. U. Baranger, W. Yang, M. S. Fuhrer, and L. R. Sita, Phys. Rev. B 71, 241401(R) (2005).
     (cond-mat/0409433)
  72. Phonon Decoherence of a Double Quantum Dot Charge Qubit, S. Vorojtsov, E. R. Mucciolo, and H. U. Baranger, Phys. Rev. B 71, 205322 (2005).
    (cond-mat/0412190)
  73. Interactions and Broken Time-Reversal Symmetry in Chaotic Quantum Dots, D. Ullmo, H. Jiang, W. Yang, and H. U. Baranger, Phys. Rev. B 71, 201310(R) (2005).
     (cond-mat/0411592)
  74. Cluster Algorithms for Quantum Impurity Models and Mesoscopic Kondo Physics, J. Yoo, S. Chandrasekharan, R. K. Kaul, D. Ullmo, and H. U. Baranger, Phys. Rev. B 71, 201309(R) (2005).
     (cond-mat/0411313)
  75. Fixed Points of the Dissipative Hofstadter Model, E. Novais, F. Guinea, and A. H. Castro Neto, Phys. Rev. Lett. 94, 170401 (2005).
     (cond-mat/0502363)
  76. A Multi-level Algorithm for Quantum-impurity Models, J. Yoo, S. Chandrasekharan, and H. U. Baranger, Phys. Rev. E 71, 036708 (2005).
     (cond-mat/0408123)
  77. Electron Transport Through Molecules: Gate Induced Polarization and Potential Shift, S.-H. Ke, H. U. Baranger, and W. Yang, Phys. Rev. B. 71, 113401 (2005).
     (cond-mat/0406640)
  78. Scrambling and Gate-Induced Fluctuations in Realistic Quantum Dots, H. Jiang, D. Ullmo, W. Yang, and H. U. Baranger, Phys. Rev. B. 71, 085313 (2005).
     (cond-mat/0405262)
  79. Contact Atomic Structure and Electron Transport Through Molecules, S.-H. Ke, H. U. Baranger, W. Yang, J. Chem. Phys. 122, 074704 (2005).
     (cond-mat/0405047)
  80. Intermolecular Effect in Molecular Electronics, R. Liu, S.-H. Ke, H. U. Baranger, and W. Yang, J. Chem. Phys. 122, 044703 (2005).
     (cond-mat/0409523)

    2004

  81. Molecular Conductance: Chemical Trends of Anchoring Groups, S.-H. Ke, H. U. Baranger, and W. Yang, J. Am. Chem. Soc. 126, 15897 (2004).
      (cond-mat/0402409)
  82. Landau Fermi Liquid Picture of Spin Density Functional Theory: Strutinsky Approach to Quantum Dots, D. Ullmo, H. Jiang, W. Yang, and H. U. Baranger, Phys. Rev. B 70, 205309 (2004).
      (cond-mat/0401389)
  83. Fermi-Edge Singularities in the Mesoscopic X-ray Edge Problem, M. Hentschel, D. Ullmo, and H. U. Baranger, Phys. Rev. Lett. 93, 176807 (2004).
     (cond-mat/0402207)
  84. Excitations and Quantum Fluctuations in Site Diluted Two-Dimensional Antiferromagnets, E. R. Mucciolo, A. H. Castro-Neto, and C. Chamon, Phys. Rev. B 69, 214424 (2004).
     (cond-mat/0402102)
  85. Conjugate-Gradient Optimization Method for Orbital-free Density Functional Calculations, H. Jiang and W. Yang, J. Chem. Phys. 121, 2030 (2004).
    (cond-mat/0401337)
  86. Electron Transport Through Molecules: Self-consistent and Non-self-consistent Approaches, S.-H. Ke, H. U. Baranger, and W. Yang, Phys. Rev. B 70, 085410 (2004).
     (cond-mat/0311545)
  87. Electron-Electron Interactions in Isolated and Realistic Quantum Dots: A Density Functional Theory Study, H. Jiang, D. Ullmo, W. Yang, and H. U. Baranger, Phys. Rev. B 69, 235326 (2004).
     (cond-mat/0401043)
  88. Spin Qubits in Multi-Electron Quantum Dots, S. Vorojtsov, E. R. Mucciolo, and H. U. Baranger, Phys. Rev. B 69, 115329 (2004).
     (cond-mat/0308118)
  89. Statistical Fluctuations of Pumping and Rectification Currents in Quantum Dots, M. Martinez-Mares, C. H. Lewenkopf, and E. R. Mucciolo, Phys. Rev. B 69, 085301 (2004).
     (cond-mat/0309197)

    2003

  90. Density Functional Theory Simulation of Large Quantum Dots, H. Jiang, H. U. Baranger, and W. Yang, Phys. Rev. B 68, 165337 (2003).
     (cond-mat/0301176)
  91. Mesoscopic Fluctuations in Quantum Dots in the Kondo Regime, R. K. Kaul, D. Ullmo, and H. U. Baranger, Phys. Rev. B 68, 161305(R) (2003).
     (cond-mat/0306074)
  92. Addition Energy of Fullerenes and Carbon Nanotubes as Quantum Dots: The Role of Symmetry, S.-H. Ke, H. U. Baranger, and W. Yang, Phys. Rev. Lett. 91, 116803 (2003).
      (cond-mat/0301175)
  93. On Breaking Time Reversal Symmetry in a Simple, Smooth, Chaotic System, S. Tomsovic, D. Ullmo, and T. Nagano, Phys. Rev. E 67, 067201 (2003).
     (nlin.CD/0302034)
  94. Exchange and the Coulomb Blockade: Peak Height Statistics in Quantum Dots, G. Usaj and H. U. Baranger, Phys. Rev. B 67, 121308(R) (2003).
     (cond-mat/0211649)
  95. Quantum Dot Ground State Energies and Spin Polarizations: Soft Versus Hard Chaos, D. Ullmo, T. Nagano, and S. Tomsovic, Phys. Rev. Lett. 90, 176801 (2003).
     (cond-mat/0211412)
  96. Spin and Conductance-Peak-Spacing Distribution in Large Quantum Dots: A Density Functional Theory Study, H. Jiang, H. U. Baranger, and W. Yang, Phys. Rev. Lett. 90, 026806 (2003).
     (cond-mat/0208146)

    2002

  97. Spin and e-e Interactions in Quantum Dots: Leading Order Corrections to Universality and Temperature Effects, G. Usaj and H. U. Baranger, Phys. Rev. B 66, 155333 (2002).
     (cond-mat/0203074)

    2001

  98. Interactions in Chaotic Nanoparticles : Fluctuations in Coulomb Blockade Peak Spacings, D. Ullmo and H. U. Baranger, Phys. Rev. B 64, 245324 (2001).
     (cond-mat/0103098)
  99. Semiclassical Theory of Coulomb Blockade Peak Heights in Chaotic Quantum Dots,   E. E. Narimanov, H. U. Baranger, N. R. Cerruti, and S. Tomsovic, Phys. Rev. B 64, 235329 (2001).
     (cond-mat/0101034)
  100. Random Berry Phase Magnetoresistance as a Probe of Interface Roughness in Si MOSFETs, H. Mathur and H. U. Baranger, Phys. Rev. B 64, 235325 (2001).    
     (cond-mat/0008375)
  101. Coulomb Blockade Peak Spacing Distribution: Interplay of Temperature and Spin, G. Usaj and H. U. Baranger, Phys. Rev. B 64, 201319(R) (2001).
     (cond-mat/0108027)
  102. Semiclassical Density Functional Theory: Strutinsky Energy Corrections in Quantum Dots, D. Ullmo, T. Nagano, S. Tomsovic, and H. U. Baranger, Phys. Rev. B 63, 125339 (2001).
     
  103. Mesoscopic Tunneling Magnetoresistance,G. Usaj and H. U. Baranger, Phys. Rev. B 63, 184418 (2001).
     (cond-mat/0006429)

    2000

  104. Communication Through a Diffusive Medium: Coherence and Capacity, A. L. Moustakas, H. U. Baranger, L. Balents, A. M. Sengupta, and S. H. Simon, Science 287, 287-290 (2000).
  105. Interactions and Interference in Quantum Dots: Kinks in Coulomb-Blockade Peak Positions,H. U. Baranger, D. Ullmo, and L. I. Glazman, Phys. Rev. B 61, R2425-R2428 (2000).
  106. Interaction-Induced Magnetization of a Two-Dimensional Electron Gas, F. von Oppen, D. Ullmo, and H. U. Baranger, Phys. Rev. B 62, 1935-1942 (2000).

    1999

  107. Chaos in Quantum Dots: Dynamical Modulation of Coulomb Blockade Peak Heights. E. E. Narimanov, N. R. Cerruti, H. U. Baranger, and S. Tomsovic, Phys. Rev. Lett. 83, 2640 (1999).
  108. Wireless Propagation in Buildings: A Statistical Scattering Approach,D. Ullmo and H. U. Baranger, IEEE Journal of Vehicular Technology 48, 947 (1999).
  109. Interference Phenomena in Electronic Transport Through Chaotic Cavities: An Information Theoretic Approach, P. Mello and H. U. Baranger, Waves in Random Media 9, 105-146 (1999).

Interactions in Quantum Dots: Kondo and Wigner Crystal Condensed Matter Seminar, Yale University, October 5, 2006.

 

Electrical Transport Through Single Molecules, APS March Meeting 2006 (invited talk).

 

Transport Through Single Molecules: Resonant Transmission, Rectification, Spin Filtering, and Tunneling Magnetoresistance Electronic Structure 2005, Cornell University, June 24-26, 2005.